Randomized Incremental Construction of Abstract Voronoi Diagrams

نویسندگان

  • Rolf Klein
  • Kurt Mehlhorn
  • Stefan Meiser
چکیده

Abstract Voronoi diagrams were introduced by R . Klein [Kle89b, Kle88a, Kle88b] as an axiomatic basis ofVoronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(nlogn) by a randomized algorithm, which is based on Clarkson and Shor's randomized incremental construction technique [CS89]. The new algorithm has the following advantages over previous algorithms: • It can handle a much wider dass of abstract Voronoi diagrams than the algorithms presented in [Kle89b, MM091J . • It can be adapted to a concrete kind ofVoronoi diagram by providing a single basic operation, namely the construction of a Voronoi diagram of five sites. Moreover, all geometrie decisions are confined to the basic operation, and using this operation, abstract Voronoi diagrams can be constructed in a purely combinatorial manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized construction diagrams * incremental of abstract Voronoi Rolf

Abstract Voronoi diagrams were introduced by R. Klein (1988) as an axiomatic basis of Voronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(n log n) by a randomized algorithm, which is based on Clarkson and Shor’s randomized incremental construction technique (1989). The new algorithm has the following advantages over previous algorithms: l It can handle a much wider cl...

متن کامل

On the Construction of Abstract Voronoi Diagrams

We show that the abstract Voronoi diagram of n sites in the plane can be constructed in time O(n log n) by a randomized algorithm. This yields an alternative, but simpler, O(n log n) algorithm in many previously considered cases and the first O(n log n) algorithm in some cases, e.g., disjoint convex sites with the Euclidean distance function. Abstract Voronoi diagrams are given by a family of b...

متن کامل

New Results on Abstract Voronoi Diagrams

Voronoi diagrams are a fundamental structure used in many areas of science. For a given set of objects, called sites, the Voronoi diagram separates the plane into regions, such that points belonging to the same region have got the same nearest site. This definition clearly depends on the type of given objects, they may be points, line segments, polygons, etc. and the distance measure used. To f...

متن کامل

An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams

Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order-k Voronoi diagram arises for the k-nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric. In this paper, we study order-k Voronoi diagrams defined by an abstract bisecting curve system tha...

متن کامل

Randomized Incremental Construction for the Hausdorff Voronoi Diagram of point clusters

This paper applies the randomized incremental construction (RIC) framework to computing the Hausdorff Voronoi diagram of a family of k clusters of points in the plane. The total number of points is n. The diagram is a generalization of Voronoi diagrams based on the Hausdorff distance function. The combinatorial complexity of the Hausdorff Voronoi diagram is O(n + m), where m is the total number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Geom.

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1993